

PVdF research kit

The PVdF research kit comprises 4 pieces (2 pieces of 80 μ m and 2 pieces of 40 μ m thick) of uniaxially oriented and poled PVdF homopolymer. Each piece has dimensions 5 cm by 5 cm and is supplied with electrodes of 250 nm Gold on top of 40 nm Chrome on each surface.

Quarter and half wave thickness resonance frequencies for PVdF film can be deduced from the acoustic velocity and the thickness of the film.

There may be some localised variation in properties and therefore all data within this document are provided as indicative values and cannot be guaranteed.

Precision Acoustics Ltd Hampton Farm Business Park, Higher Bockhampton, Dorchester, Dorset DT2 8QH, UK

- Two pieces of 80 μm thick PVdF with dimensions 5 cm x 5 cm
- Two pieces of 40 μm thick PVdF with dimensions 5 cm x 5 cm

All pieces of film are provided with metallised electrodes comprising 250 nm Gold (Au) electrodes on top of 50 nm Chrome (Cr) keying layer.

BASIC INFORMATION

PVdF is a semi-crystalline polymer consisting of crystallites embedded within amorphous polymer chains.

Acoustical properties			
Longitudinal wave speed	CL	2250 m/s	
Shear wave speed	Cs	1085 m/s	
Density	ρ	1780 kg/m³	
Thermal properties			
Melting temperature	T _m	175 °C	
Curie temperature	Tc	205 °C	
Maximum usable temperature	T_{max}	70 °C	
Glass transition temperature	Tg	-42 °C	
Volume specific heat		2.5 J/(cm³ °C)	
Thermal conductivity	K	1.3 mW/(cm³ °C)	
Thermal diffusivity	α	0.053 mm²/s	
Electrical properties			
Coercive field strength	Ec	110 MV/m	
Breakdown field strength	EB	150-200 MV/m	
Volume resistivity		>10 ¹⁴ Ω m	
Relative di-electric constant	ε _r	See Figure 1 below	
Di-electric loss tangent	tan(δ)	See Figure 2 below	
Elastic constants			
C ₃₃ D		9.0 GPa	
C ₃₃ ^E		8.6 GPa	
Piezoelectric constants			
kt		0.145	
d ₃₁		Quasi-static:	27 pC/N
d ₃₂		Quasi-static:	5 pC/N
d ₃₃		Quasi-static:	19.1 pC/N
		10 MHz to 20 MHz:	25.5 pC/N
Optical properties			
Refractive index	n	1.42	
Beta : Alpha phase ratio		82% (determined by FTIR)	

DI-ELECTRIC CONSTANT

TECHNICAL DATA SHEET

Figure 2 – Average dielectric loss tangent of PVDF as a function of frequency

PRODUCT SUPPORT

Disclaimer

All information is based on results gained from experience and tests and is believed to be accurate but is given without acceptance of liability for loss or damage attributable to reliance thereon as conditions of use lie outside the control of Precision Acoustics Ltd.

Warranty

The warranty will be for 12 months against defect of hardware component or manufacture only.

CONTACT DETAILS

Address	Precision Acoustics Ltd, Hampton Farm Business Park, Dorchester, Dorset,
	DT2 8QH
Tel	+44 (0)1305 264669
Commercial matters	office@acoustics.co.uk
Technical matters	technical@acoustics.co.uk

PA terms & conditions are available at https://www.acoustics.co.uk/company/terms-and-conditions/