

PVdF piezo-electric film

Precision Acoustics Ltd are pleased to announce the re-introduction of their range of PVdF piezo-electric film. This PVDF homopolymer is available in two different thicknesses and can be supplied with or without metallised electrodes.

Quarter and half wave thickness resonance frequencies for PVdF film can be deduced from the acoustic velocity and the thickness of the film.

There may be some localised variation in properties and therefore all data within this document are provided as indicative values and cannot be guaranteed.

AVAILABLE FILM CONFIGURATIONS

Nominal thickness [μm]	Orientation	
40	Uni-axially stretched	
80	Uni-axially stretched	

EVAPORATED ELECTRODE OPTIONS

Film is usually coated with 250 nm Gold (Au) electrodes on top of 50 nm Chrome (Cr) keying layer but can be supplied without evaporated electrodes (on request).

SHEET DIMENSIONS

- PVdF piezo-electric film with evaporated electrodes is available in sheets of 170 mm by 180 mm.
- PVdF piezo-electric film without electrodes is available in any length and width up to 350 mm.

BASIC INFORMATION

PVdF is a semi-crystalline polymer consisting of micro-crystallites within amorphous polymer chains.

// ^ ^ / / / / / / / / / / / / / / / /	properties
ACOUSING	DIODELLES
, 1000001001	

Acoustical properties				
Longitudinal wave speed	CL	2250 m/s		
Shear wave speed	CS	1085 m/s		
Density	ρ	1780 kg/m³		
Thermal properties				
Melting temperature	T_m	175 °C		
Curie temperature	T_C	205 °C		
Maximum usable temperature	T_{max}	70 °C		
Glass transition temperature	T_g	-42 °C		
Volume specific heat		2.5 J/(cm³ °C)		
Thermal conductivity	K	1.3 mW/(cm ³ °C)		
Thermal diffusivity	α	0.053 mm ² /s		
Electrical properties				
Coercive field strength	Ec	110 MV/m		
Breakdown field strength	E_B	150-200 MV/m		
Volume resistivity		$>10^{14}~\Omega$ m		
Relative di-electric constant	ϵ_{r}	See Figure 1 below		
Di-electric loss tangent	$tan(\delta)$	See Figure 2 below		
Elastic constants				
C_{33}^D		9.0 GPa		
C_{33}^{E}		8.6 GPa		
Piezoelectric constants				
k_t		0.145		
d_{31}		Quasi-static:	27 pC/N	
d_{32}		Quasi-static:	5 pC/N	
d ₃₃		Quasi-static:	19.1 pC/N	
		10 MHz to 20 MHz:	25.5 pC/N	
Optical properties				
Refractive index	n	1.42		
Beta : Alpha phase ratio		82% (determined by FTIR)		

DI-ELECTRIC CONSTANT

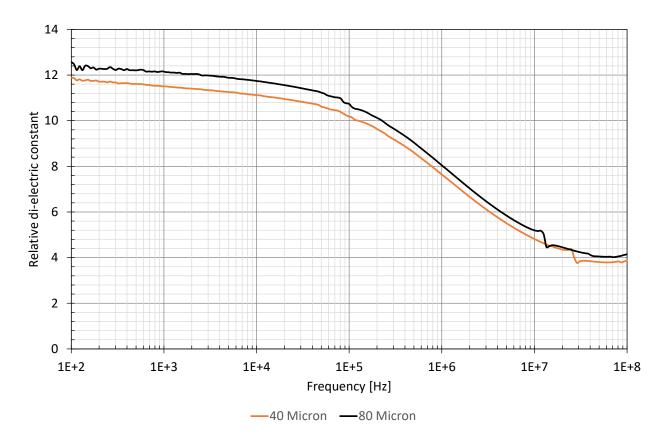


Figure 1 - Dielectric constant of PVDF as a function of frequency

Figure 2 – Dielectric loss tangent of PVDF as a function of frequency

PRODUCT SUPPORT

Disclaimer

All information is based on results gained from experience and tests and is believed to be accurate but is given without acceptance of liability for loss or damage attributable to reliance thereon as conditions of use lie outside the control of Precision Acoustics Ltd.

Warranty

The warranty will be for 12 months against defect of hardware component or manufacture only.

CONTACT DETAILS

Address Precision Acoustics Ltd, Hampton Farm Business Park, Dorchester, Dorset,

DT2 8QH

Tel +44 (0)1305 264669
Commercial matters office@acoustics.co.uk
Technical matters technical@acoustics.co.uk

PA terms & conditions are available at https://www.acoustics.co.uk/company/terms-and-conditions/